

0.5-30 GHz Ultra-wideband Amplifier

Features

- ◆ Frequency Range: 0.5 30.0GHz
- ◆ 11.0 dB Nominal gain
- ◆ Gain Flatness: ±2.0 dB
- ◆ Input Return Loss > 10 dB
- ◆ Output Return Loss > 10 dB
- DC decoupled input and output
- ◆ 0.15 µm InGaAs pHEMT Technology
- ◆ Chip dimension: 3.0 x 1.5 x 0.1 mm

Functional Diagram

Typical Applications

- Wideband LNA/Gain block
- Electronic warfare
- Test Instrumentation

Description

The AMT2175041 is an Ultra wideband pHEMT GaAs MMIC designed to operate over 0.5GHz to 30 GHz frequency range. The design employs a 7-stage, cascode-connected pHEMT structure to ensure flat gain and good return loss. The device offers a typical small signal gain of 11 dB over the operating frequency band and has a Noise figure of less than 4 dB in 3.5-18.5GHz band. The Input & output are matched to 50Ω with a VSWR better than 2:1. The chip is unconditionally stable over the frequency& bias ranges.

The AMT2175041 is suitable for a variety of wideband electronic warfare systems such as radar warning receivers, jammers and instrumentation. In addition, the chip may also be used as a gain block. The die is fabricated using a reliable 0.15µm InGaAs pHEMT technology.

Absolute Maximum Ratings (1)

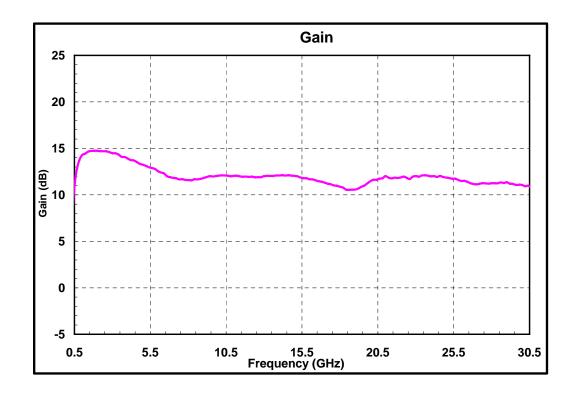
Parameter	Absolute Maximum	Units	
Positive DC voltage	+8	V	
RF input power	+16	dBm	
Supply Current	180	mA	
Operating Temperature	-55 to +85	°C	
Storage Temperature	-65 to +150	°C	

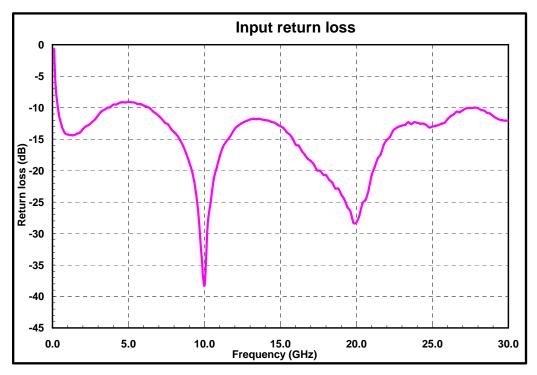
^{1.} Operation beyond these limits may cause permanent damage to the component

Rev. 1.0 February 2007

Electrical Specifications $^{(1)}$ @ T_A = 25 °C, Zo =50 Ω ; Vdd = 5V, Vg2 = 3.5V Vg1 =-0.3V

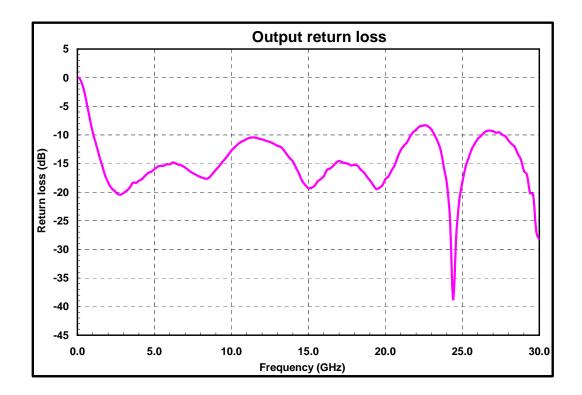
Parameter	Min.	Typ. value	Max.	Units
Frequency Range	0.5	_	30.0	GHz
Gain	10	11.0	15	dB
Gain Flatness	-	± 2.0	_	dB
Noise Figure	4.0	7.0	_	dB
Input Return Loss	8	12	_	dB
Output Return Loss	8	12	ı	dB
Output Power (P1 dB)	_	10	-	dBm
Saturated output power (Psat)	_	12	_	dBm
Supply voltages ^{(2),(3)}	_	Vdd=+5 Vg1=-0.3 Vg2=+3.5		V
Current	_	90	150	mA

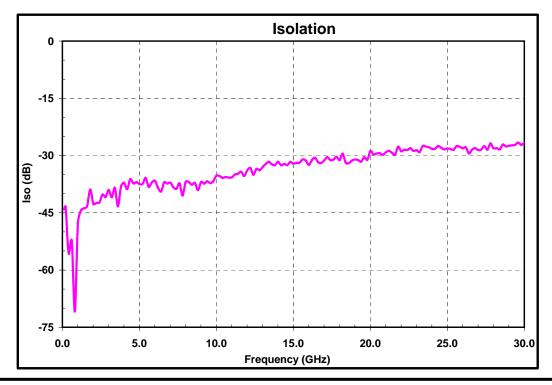

Note:


- 1. Electrical specifications mentioned above are measured in a test fixture.
- 2. The amplifier is biased with two positive supplies (Vdd & Vg2) and a single negative gate supply (VG1). The recommended bias conditions for the chip are Vdd=5.0V/90mA, Vg1=-0.3V, Vg2=3.5V.
- 3. By varying the Vg1 & Vg2 the gain & current can be controlled to the user requirements.

Test fixture data

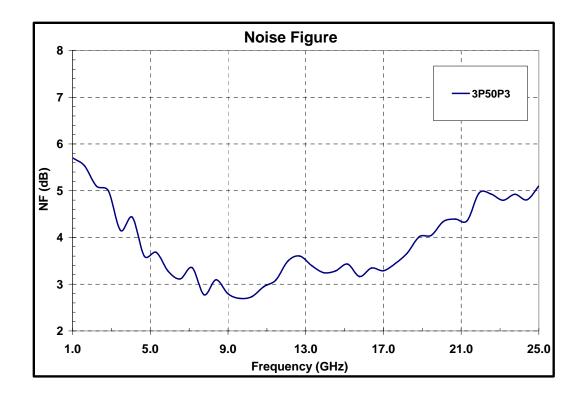
VD= +5V, Vg2 =3.5V Vg1 = -0.3V, Total Current =90 mA, T_A = 25 °C




Astra Microwave Products Limited, Hyderabad, INDIA

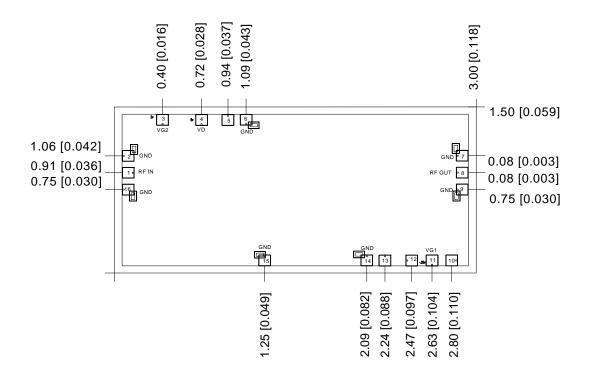
Test fixture data

VD = +5V, Vg2 = 3.5V Vg1 = -0.3V, Total Current = 90 mA, $T_A = 25 \, ^{\circ}C$



Astra Microwave Products Limited, Hyderabad, INDIA

Test fixture data


VD= +5V, Vg2 =3.5V Vg1 = -0.3V, Total Current =90 mA, T_A = 25 °C

Rev. 1.0 February 2007

Mechanical Characteristics

Units: millimeters [inches]

All RF and DC bond pads are 100µm x 100µm

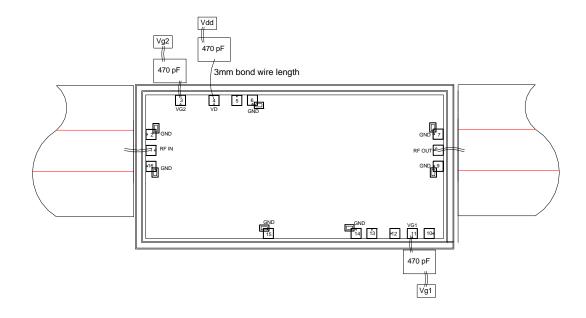
Note:

1. Pad no. 01: RF IN

2. Pad no. 03: VG2

3. Pad no. 04: VD

4. Pad no. 08: RF OUT


5. Pad no. 11: VG1

6. Pad no. 02,06,07,09,14,16: GND

Rev. 1.0 February 2007

Recommended Assembly Diagram

Note:

- 1. Two 1 mil (0.0254mm) bond wires of minimum length should be used for RF input and output.
- 2. 3mm long minimum bond length is to be used at the VD i.e., at Pad no. 4
- 3. Two 1 mil (0.0254mm) bond wires of minimum length should be used from chip bond pad to 12pF, 100pF capacitor.
- 4. Input and output 50 ohm lines are on 5mil Alumina/RT Duroid substrate.
- 5. The supply voltages are VD=5.0V, VG1=-0.3V, VG2=+4.5V
- 6. 0.1 µF capacitors may be additionally used as a second level of bypass for reliable operation at the power supplies.

Die attach: For Epoxy attachment, use of a two-component conductive epoxy is recommended. An epoxy fillet should be visible around the total die periphery. If Eutectic attachment is preferred, use of fluxless AuSn (80/20) 1-2 mil thick preform solder is recommended. Use of AuGe preform should be strictly avoided.

Wire bonding: For DC pad connections use either ball or wedge bonds. For best RF performance, use of 150 - 200µm length of wedge bonds is advised. Single Ball bonds of 250-300µm though acceptable, may cause a deviation in RF performance.

GaAs MMIC devices are susceptible to Electrostatic discharge. Proper precautions should be observed during handling, assembly & testing

All information and Specifications are subject to change without prior notice